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Abstract. Regular products of single-hook characters of the unitary group are defined. 
Their expansion in terms of irreducible characters is discussed and illustrated, along with the 
inverse of this expansion for all characters labelled by partitions of n with n = 5 and n = 9. It 
is shown that these regular products form an integral basis for the vector space of 
homogeneous functions. 

1. Introduction 

The character of each irreducible representation of the unitary group U(N) may be 
conveniently denoted by {A} where A = (A AZ, . . ,) is a partition of n for some n.  It is 
well known that such a character possesses determinantal expansions as a sum of 
products of symmetric characters { m }  (Littlewood 1940, p 88) and as a sum of products 
of antisymmetric characters (1") (Littlewood 1940, p 89). Furthermore, there exists a 
reduced determinantal expansion of {A} as a sum of products of single-hook characters 
{ l + a ,  lb} (Littlewood 1940, p 94, Macdonald 1979, p 68). 

The first two expansions of the characters {A}, for all partitions A of n, possess 
inverses whereby each product of symmetric characters and each product of antisym- 
metric characters of total weight n may be expressed as a sum of these irreducible 
characters {A}. In contrast to this, the third expansion does not possess an inverse, even 
though each product of single-hook characters of total weight n may be expressed as a 
sum of irreducible characters {A} by means of the Littlewood-Richardson rule (Little- 
wood 1940, p 94). 

The origin of the deficiency lies in the fact that the reduced determinantal expansion 
of {A} gives rise to more products of single-hook characters of total weight n than there 
are partitions of n. This may be remedied by restricting these products to those which 
are regular in the sense that the individual hooks in the product constitute a regular 
Young diagram corresponding to some partition A of n.  This is explained in the next 
section where the notation and terminology is established. 

The main concern of this paper is then to demonstrate, as is done in § 3, that these 
regular products of single-hook characters form a complete linearly independent set, 
and to give in tabular form both their expansion in terms of irreducible characters {A}, 
and the inverse expansion of {A} in terms of these regular products. 

$ Professor Jahn died in October, 1979, at which time he was collaborating with one of us (NGEI-S) on the 
work reported here. Calculations found amongst his papers form the basis of this publication. 
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In § 4 the connection between these results and the classical results concerning 
symmetric functions is discussed. In particular, it is shown that the definition of regular 
products introduced in 0 2 serves to provide a new integral basis (Hall 1959, Stanley 
1971) for the vector space of homogeneous symmetric functions. Furthermore, an 
additional dual basis is also obtained. 

A preliminary note (El-Sharkaway et a1 1980) on this work has appeared elsewhere. 

2. Notation 

Thepartitionofnintopnon-vanishingpartsA1,A2,. . . , A P  w i t h A l z A 2 z . .  . 3 A P  >Ois 
denoted by A = (Al ,  A2, . . . , A p ) .  In such a case the weight of A is said to be n = 
A l + A 2 + .  . . + A p ,  and it is then sometimes convenient to write A E n .  Each such 
partition specifies a regular Young diagram consisting of n boxes arranged in left- 
adjusted rows such that the ith row contains hi boxes. The fact that the same diagram 
consists of n boxes arranged in top-adjusted columns such that thejth column contains 
ik boxes serves to define the conjugate partition A = (il, iz,. . . , i,) where q is the 
number of columns. Furthermore, the same diagram also consists of n boxes arranged 
in diagonally adjusted right-angled hooks such that the kth hook contains ( A k  + ik - 
2k + 1) boxes arranged in such a way that the hook consists of a single box on the main 
diagonal together with an arm of length ak = hk - k and a leg of length bk = ik - k. The 
length of the kth hook is thus hk = ak + bk + 1, and the number of such hooks is the 
Frobenius rank, r,  of the corresponding partition (Littlewood 1940, p 60). The partition 
A thus defines and is defined by the Frobenius symbol 

The regularity of the Young diagram is ensured by the conditions a l  > a2 > . . . >a, 3 0 
a n d b l > b 2 > .  . . > b , s O .  

This notation is exemplified in the case of the regular Young diagram 

6 1 0  (3 = ( o). The constituent hooks are 

corresponding to the partition A = (73*212), for which the conjugate partition is 

h” = (643 14), whilst the Frobenius symbol is 

of lengths given by h = (12,4, 1) and the Frobenius rank is 3. 
Each partition A serves to label the character of an irreducible representation of the 

unitary group U(N) which is the S-function {A} of the eigenvalues of the appropriate 
group element (Littlewood 1940, p 222, King and Plunkett 1976). Following Hall 
(1959) and Stanley (197 l), such an S-function is also denoted by 

F 
e,, ={A}. 

Each such partition also serves to  label characters S(A) and A(A) (Braunschweig and 
Hecht 1978) of representations which are, in general, reducible. These characters are 
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just the multiplicatively defined classical symmetric functions h, and ai (Littlewood 
1940, p 104, Hall 1959, Stanley 1971, Macdonald 1979, pp 12, 15), 

Clearly these products, involving as they do symmetric characters {A i }  and antisym- 
metric characters { l’f }, exploit the row and column structure, respectively, of the Young 
diagram specified by the partition A .  In precisely the same way it is possible to define 
new characters R (A),  and correspondingly new symmetric functions r,, by 

r A = R ( A ) = { A 1 ,  lx1-’}{A2-l, l’z-’}...{Ar-r+l,lxr-r}, 

which exploit the hook structure of the Young diagram specified by A. Such a product 
involves the single-hook characters 

so that in the notation of (2.1) 

r, = R (A)  = { 3 . . . { ;:}. 
Such a product of single-hook characters is said to be regular, since the regular Young 
diagram corresponding to A is recovered by diagonally adjusting the right-angled hooks 

(i :) , (i:), . . . , (”‘) appearing in the product. This confirms the one-to-one cor- 

respondence between the symmetric functions r, and the partitions A. 
In what follows, it is necessary to make use of an ordering scheme for the partitions A 

of II which is appropriate to the use of the Frobenius symbol notation (2.1). If A = 

and h = U  + b  +1 where A has Frobenius rank r and 1 = (lr) ,  whilst A ’  = (i:) and 

h ’ =  u’+b’+ 1’ where A ‘  has Frobenius rank r‘ and 1’= (lr’), and if A and A ’  are both 
partitions of n, then A is said to precede A ’  if the first non-vanishing difference r‘-r,  
hk - h ;  fork = 1,2, . . . , r, ak -a ;  fork = 1,2, . . . , r is positive. Thus the partitions are 
ordered by rank, and then lexicographically by hook lengths and finally lexicographic- 
ally by arm lengths. 

br 

(3 

In the case of n = 9, for example, the ordered list of partitions is as follows: 

9, 81, 71’, 613, 514, 415, 316, 217, 19, 

72, 621, 521’, 4213, 3214, 2’15, 

63, 531, 522, 431’, 42’1, 3’13, 32’1’, 2313, 

54, 4’1, 432, 3’21, 323, 241 and 

33, corresponding to the Frobenius symbols 
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3. The expansion of regular products of single-hook characters 

It is well known that the characters {A} of U(N) possess the determinantal expansions 
(Littlewood 1940, pp 88, 89) 

where the ijth element of each determinant has been displayed with i andj  ranging over 
the values 1 ,2 ,  . . . , p and 1,2,  . . . , q in (3.1) and (3.2) respectively. The expansion of 
these determinants and the commutativity of products of characters leads to the 
formulae 

e, ={A}= 2 B?S(p)  = c Bzh,, (3.3) 
P t-n P +n 

e, ={A}= B f A ( p ) =  B f a f i ,  
/.I I-n P +n 

(3.4) 

where the coefficients BX are integers which have been tabulated, for example, by 
Blaha (1 969). 

It is easy to see that if the partitions are ordered lexicographically with respect to the 
labels A and ,i, the matrices of coefficients in (3.3) and (3.4) are lower triangular with 
each diagonal element equal to 1. It follows that the inverse matrices exist. They may 
be found directly by using the appropriate special cases of the Littlewood-Richardson 
rule (Littlewood 1940, p 94) for the multiplication of S-functions to evaluate the 
products 

a r = A ( A ) =  Kf-$}= Kfe,. (3.6) 

The coefficients appearing in (3.5) are the elements of Kostka’s matrix K which have 
been tabulated not only by Kostka (1882,1907), but also by, for example, Blaha (1969). 

To generalise this work it is tempting to consider the reduced determinantal 
expansion (Littlewood 1940, p 112) 

(3.7) 

where now i and j range over the values 1, 2, . . . , r .  Unfortunately, whilst this formula 
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is the natural generalisation of (3.1) and (3.2) involving single-hook characters, it does 
not lead to  an expansion of the form (3.3) and (3.4), since the products of single-hook 
characters which emerge include some which are not regular, in the sense that they do 
not correspond to R ( p )  for any partition p. 

For example, 

where the first term is just R (3,2), since it corresponds to  the regular Young diagram 

p, but the second term corresponds to an irregular diagram when the 

constituent hooks -1 and are diagonally adjusted. E 
It is therefore necessary to adopt a different approach avoiding irregular diagrams. 

This may be accomplished by evaluating the regular products of single-hook characters, 
(2.6), in the form 

This is directly analogous to (3.5) and (3.6), and the coefficients appearing here may be 
found by a straightforward application once again of the Littlewood-Richardson rule. 

Clearly, in the cases for which A = (1 1- a,  1 ) - is a single hook, r,, = e,,. This holds 

true for all partitions A of n = 1 ,2  and 3. The results appropriate to the cases n = 5 and 
n = 9 are given in table 1. For n = 5 the complete matrix H has been displayed with 
rows and columns labelled by A and p respectively, ordered with respect to the 
precedence convention defined in P 2. For IZ = 9 the complete matrix H may be 

-(3 

Table 1. The coefficients Hf;  and J :  defined by r,, = Z,, H r e ,  and e,, = Zlph JXr, for 
A ,  p t n  = 5 and 9. An entry x + j  indicates that H: (or J P )  = x  whilst H f  (or . T : )  = y .  

5 41 32 221 5 41 3 i 2  2 i 3  is 32 2’1 

5 1  5 1  
41 I 41 1 
3 1’ 1 31’ 1 
2 i 3  1 2 i 3  1 
is 1 i5 1 

32 1 1  1 32 -1 -1 1 
2’1 1 1  1 221 -1 -1 1 
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Table 1-continued. 

,.i i9 21’ 3i6 41’ 2’1’ 3214 4213 2313 32212 3’13 42’1 z4l 323 3’21 
~ ~ ~ ~ ~~~ \ 9 81 71’ 613 514 72 621 5212 63 531 52’ 431‘ 54 4’1 432 33 

9 1 
81 1 
71’ 1 
613 1 
514 1 

72 1 1  1 
62 1 1 1  1 
521’ 1 1  1 

63 1 1  1 1  1 
531 1 1  1 1  1 
52’ 1 1  1 1  1 
431’ 1 1  i + i  1 

54 1 1  1 1  1 1  1 
42 1 1 1  1 1  1 1 1 
432 1 1  1 2+i 1 1 i+i 1 

33 i+i 2 l+i 4u4 2+i 2+i 44-4 i+ i  3+3 1 

,.i i9 21’ 3i6 4i5 2’1’ 3214 4213 2313 32’1’ 3’13 42’1 241 323 3’21 

\ 9 81 712 613 Si4 72 621 521’ 63 531 52’ 431’ 54 4’1 432 33 
~~~ 

9 1 
81 1 
71’ 1 
613 1 
514 1 

72 -1 -1 1 
62 1 -1 -1 1 
521’ -1 -1 1 

63 1 1  -1 -1 1 
531 1 1  -1 -1 1 
52’ 1 1  -1 -1 1 
43 1’ i i  -1-i 1 

54 
4’ 1 
432 

-1 -1 1 1 -1 -1 1 
-i -1 i+i -1 -1 1 
-1 -1 1 2+i -1 -1 -1-i 1 

33 -1-1 2 -3-3 2+i i+i 3+3 -1-i -3-3 I 
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recovered by noting that 

r,- = R ( i )  = Href i ,  i.e. H i  =HI” A .  
I” +n 

(3.9) 

It is to be observed that the resulting matrices H ,  when given completely, are lower 
triangular with each diagonal element equal to 1. In order to prove this it is only 
necessary to note two points. Firstly, the Littlewood-Richardson rule is such that the 
product of any irreducible character {v}, specified by a partition v of Frobenius rank s, 

with a single-hook character { 1 + a, 1 } - , specified by a partition of Frobenius rank 

1, consists of a sum of irreducible characters specified by partitions whose Frobenius 
rank is either s or s + 1. It follows that in the product 

-141 
(3.10) 

which defines the expansion (3.8), the maximum value taken by the Frobenius rank of 
the partitions p, specifying the terms (I*.}, is simply r. 

Secondly, the Littlewood-Richardson rule implies further that in this product the 
terms (I*.} which may arise are such that if 

(3.11) 

with hk = ck + d k  + 1, then the minimum value of hl  is a l  + bl  + 1. For such terms it is 
necessarily true that c 1  = a l  and d l  = b l ,  and furthermore the minimum value of h2 is 
then az + b2 + 1, in which case c2 = a2 and d 2  = b2.  Continuing in this way, it is clear that 
the term, @}, of lowest precedence, in the sense defined in 0 2, is nothing other than {A} 
itself. This term is of maximum rank r and is lowest in lexicographic ordering with 
respect to the labels h. 

This confirms the lower triangular nature of the matrix H .  Furthermore, it is clear 
that the matrix has a block structure, each block being associated with specific labels r 
and h.  The diagonal blocks are then necessarily seen to be unit matrices. It follows that 
each matrix H possesses an inverse J whose elements serve to define the inverse of 
(3.8), namely 

(3.12) 

The corresponding coefficients are also given in table 1 for n = 5 and n = 9. As in (3.9), 

e,- ={h”}= 2 J f ; r f i ,  i.e. J x  = J f ; .  
I” +n 

(3.13) 

This result may be used in the case n = 9 to recover from the table the complex matrix J .  

4. New symmetric functions 

The vector space of all homogeneous symmetric functions of degree n in the indeter- 
minates xl, x 2 ,  . . . has a basis consisting of the monomial symmetric functions 
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for all partitions A of n, where the summation is carried out over all distinct monomials 
in xl, x2,. . . with exponents h l ,  h 2 , .  . . in some order (Littlewood 1940, p 63, Hall 
1959, Stanley 1971). 

Alternative bases are provided by the symmetric functions hA (x), ah (x) and eh (x) 
encountered in 8 2. These are related to k, (x) by the identities 

hA (x) = hA,(x)h,,(X) . . . with h,(x) 

uA(x)=uA,(x)uA,(x). . .with a , ( x ) = k l - ( x )  

eA(x)  = ~ : k , ( x ) ,  

k, (x), 
c1 +m 

and 

, C n  

(4.2) 

(4.3) 

(4.4) 

where the coefficients constitute K T ,  the transpose of Kostka’s matrix K defined by 

Any basis which can be related to k,(x)  by means of a matrix with integral 
coefficients and determinant k l  is said to be an integral basis (Hall 1959, Stanley 1971). 
The bases provided by h, (x), U ,  (x) and eA (x) are integral bases. 

(3.5). 

It follows from (3.8) and (4.4) that 

where the matrix HKT relating rA (x) to k ,  (x) possesses integral coefficients and has 
determinant 1, since this is true of both H and K .  ‘Thus a new integral basis is provided 
by the symmetric functions r, (x). As an example, the functions rA (x) are given in terms 
of k A ( x )  in table 2 where A is a partition of 5 .  Use has been made of the matrix H of 
table 1 and the known matrix K (Blaha 1969, Braunschweig and Hecht 1978), and a 
lexicographic ordering of rows and columns has been adopted. 

There necessarily exist some further new symmetric functions, & (x) dual to r, (x) 
defined in such a way that (Stanley 1971) 

(4.9) 

Table 2. The coefficients (HKT)B defined by r, = Z,,, (HK’)Rk, for A, p C n = 5. 

kF 5 41 32 31’ 2’1 213 is 
r, 

5 1 1 1 1 1 1  1 
41 1 1 2 2 3  4 
32 1 2  4 5 9 15 
3 1’ 1 1 3  6 
22 1 1 2 6 1 5  
2 i3  1 4 
i5 1 
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where the first equality expresses the fact that S- functions are self-dual as stressed by 
Hall (1959). For completeness the ‘forgotten’ symmetric functions, fA (x) (Doubilet 
1972), which are dual to L Z ~ ( X ) ,  have been included (Macdonald 1979, p 15). 

It follows from (3.1 2), (4.6) and the definition (4.9) that 

and then from (4.4) that 

(4.10) 

(4.11) 

In the case n = 5 the corresponding matrix JTKT relating g A  (x) to k A ( x )  is given in 
table 3. 

Table 3. The coefficients (JTKT)P defined by g, = XFtn (JTKT)Pk, for A, p t 5 .  

5 41 32 31‘ 221 213 l5 

5 1 1 1 1 1 1 1  
41 1 1 -1 
32 1 1 2 3 5  
312 -1 -2 -2 -4 
221 1 2 5  
2 i 3  -1 -1 -1 
i5 1 

Hall (1959) defined a lintar transformation 8 in the space of homogeneous 
symmetric functions through the mapping 8 : a ,  + h,. This mapping is such that 
8 : eA  -+ex, so that 8 acts as a conjugacy operation on the partitions labelling the 
S-functions eA. The action of 8 on the other symmetric functions is given by. 

8 : a A + h A ,  8 :hA +aA, e : k A  +fA, 

8 :fA + k A ,  8 : rA + rji, 8 : g A  + g i  
where for the last two mappings use has been made of (3.9) and (3.13). 

One consequence of these transformations is the validity of the identities 

(4.12) 

(4.13) 

(4.14) 

(4.15) 
A 

where the first equality is a remarkable property of S-functions (Stanley 1971, Mac- 
donald 1979, p 35). 

Whilst the structure of the matrices of tables 2 and 3 makes it unlikely that the 
integral bases rA and gA will assume much importance, it is hoped that the expansions 
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(3.8) and (3.9) as exemplified in table 1 will enable calculations involving the represen- 
tations of the unitary groups U(N) to be carried out using the special properties of those 
representations having single-hook characters. 
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